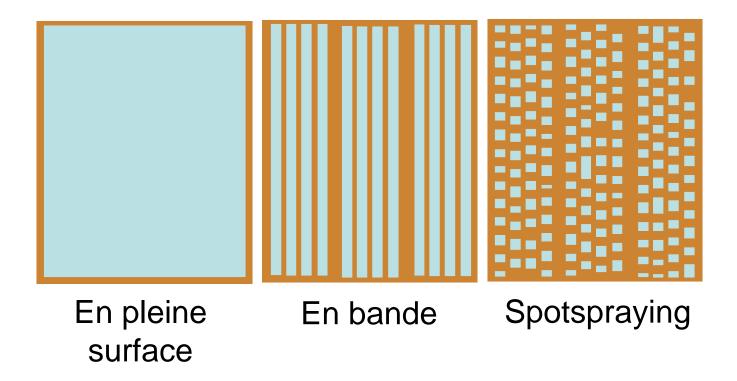

Production maraîchère durable

 Détermination des entrées de PPh dans l'environnement avec la technique du spotspraying


J. Witsoe, T. Poiger, F. Häfner

9e journée du Plan d'action sur les produits phytosanitaires, 16 septembre 2025

Situation actuelle

Application ciblée

Grâce à des applications ciblées : on peut réduire les risques et économiser des produits phytosanitaires tout en continuant à protéger les cultures.

0

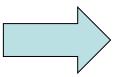
Recherche par étapes: développement du projet

Projet I (2017-2021)

- Steketee Prototype I, Sarcler et Spotspraying
- Potentiel d'économie de PPh, efficacité, rentabilité

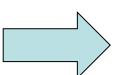
Projet II (2021-2023)

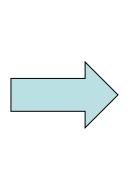
- Steketee Prototype II, Juste Spotspraying
- Potentiel d'économie de PPh, efficacité, rentabilité

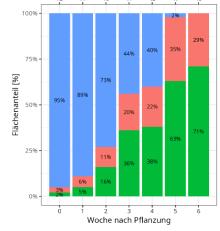

Projet III (2023-2026)

- Steketee Prototype II et Ecorobotix ARA
- Focus: **aspects environnementaux** → dérive et ruissellement

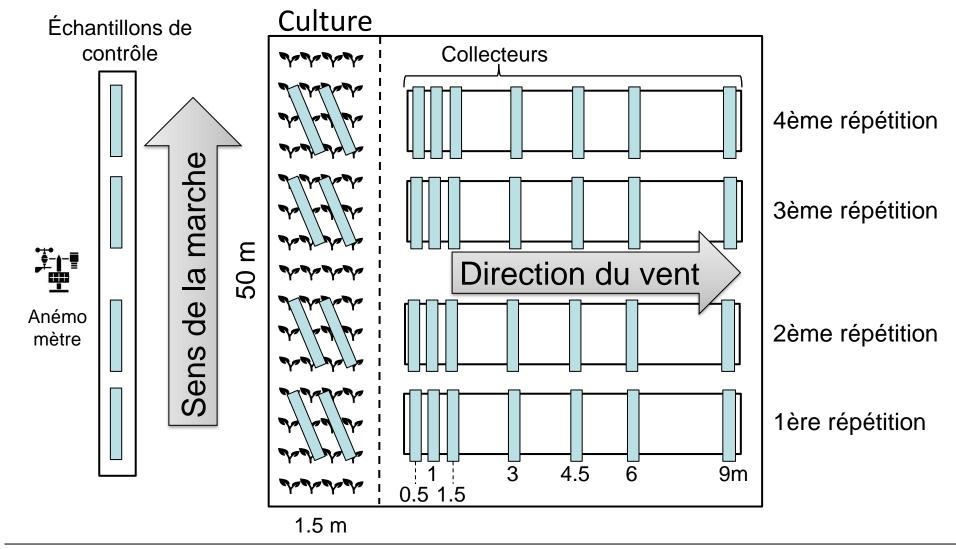
V


Potentiel de ruissellement: De la mesure à la modélisation




Nombre d'années	Nombre de plantes	Cultures mesurées
7	6'910	Brocoli, Céleri, Chicorée pain de sucre, Chou chinois, Chou palmier, Chou- rave, Fenouil, Laitue feuille de chêne, Laitue iceberg, Laitue pommée, Pak choï, Persil, Radis long

Modélisation du ruissellement


Semaines après la plantation	Potentiel d'économies de ruissellement
0	95 %
1	89 %
2	73 %
3	44 %
4	40 %
5	2 %
6	0 %

Laitue pommée, 3 SAP, BBCH 41

→ plantée le 29.04.2025

Q

Design experimental de l'essai de dérive

Manipulations experimentales

Détails du design experimental de l'essais de dérive

	Appareil	Applica tion	Buse	Hauteur de la buse [cm]	Pression [bar]	Vitesse [km/h]	Taux d'application [l/ha]	Ø Vent fort [m/s]
	Steketee Prototype II	Spot	Standard	20	3	4.5	500*	2.5
		Spot	Réduit la dérive	33	3	4.5	500*	2.1
7	Ecorobotix ARA	En pleine surface	Standard	26	3	7.0	263**	2.8
		Spot	Standard	26	3	7.0	200*	2.9

^{*}Traitements théoriques de la pleine surface

^{**} Traitement actuel

Résultats de la dérive: Steketee Prototype II

Buses standardes

- 1 passages, 4 répétitions
- 32 % de surface traitée
- Réduction de la dérive de plus de 99.9 %
- Quelques valeurs en dessous de la limite de quantification

Buses réduisant la dérive

- 3 passages, 10 répétitions
- 33 % de surface traitée
- Réduction de la dérive de plus de 99.9 % ou presque
- Plusieurs valeurs en dessous de la limite de quantification

Résultats de la dérive: Ecorobotix ARA

En pleine surface

- 3 passages, 12 répétitions
- 100 % de surface traitée
- Réduction de la dérive de plus de 99 %, certaines valeurs étant inférieures à 99.9 %
- Aucune valeur en dessous de la limite de quantification

Spotspraying

- 4 passages, 16 répétitions
- 44 % de surface traitée
- Réduction de la dérive de plus de 99 %, avec plein de valeurs en dessous de 99.9 %
- Beaucoup de valeurs en dessous de la limite de quantification

Conclusion

Modélisation du ruissellement :

➤ Au début de la culture, il existe de nombreuses possibilités pour réduire le ruissellement (par exemple, pour la laitue pommée, dans les deux semaines après la plantation: **70 à 95 %**).

Essais de dérive :

- ➢ Plus de 99 % de réduction de la dérive dans tous les essais de dérive avec des appareils de pulvérisation localisée protégés.
- Une nouvelle méthode est nécessaire pour évaluer les dépôts de dérive inférieurs afin de détecter les concentrations inférieures à 0.3 μg/l.

Plus de détails

Rapports finaux:

Projet I

https://doi.org/10.34776/as151g https://doi.org/10.34776/as186g

Projet II

Projet III

2026 prévu

Remerciements

• Aux partenaires du projet:

• Aux institutions de financement:

Projet I: AgrlQnet

Projet II: OFEV

Projet III: OFAG / Agroscope

joshua.witsoe@agroscope.admin.ch

